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Abstract: Recently, the potential use of phytocannabinoids (pCBs) to treat different pathological
conditions has attracted great attention in the scientific community. Among the different pCBs,
cannabidiol (CBD) has showed interesting biological properties, making it a promising molecule with
a high security profile that has been approved for treatment as an add-on therapy in patients afflicted
by severe pharmaco-resistant epilepsy, including Dravet syndrome (DS), Lennox–Gastaut syndrome
(LGS) and tuberous sclerosis complex (TSC). CBD is pharmacologically considered a “dirty drug”,
since it has the capacity to bind different targets and to activate several cellular pathways. GABAergic
impairment is one of the key processes during the epileptogenesis period able to induce a generalized
hyperexcitability of the central nervous system (CNS), leading to epileptic seizures. Here, by using
the microtransplantation of human brain membranes approach in Xenopus oocytes and electrophys-
iological recordings, we confirm the ability of CBD to modulate GABAergic neurotransmission in
human cerebral tissues obtained from patients afflicted by different forms of pharmaco-resistant
epilepsies, such as DS, TSC, focal cortical dysplasia (FCD) type IIb and temporal lobe epilepsy (TLE).
Furthermore, using cDNAs encoding for human GABAA receptor subunits, we found that α1β2
receptors are still affected by CBD, while classical benzodiazepine lost its efficacy as expected.

Keywords: GABAA receptor; neurophysiology; epilepsy

1. Introduction

Cannabis sativa has been used for centuries for the treatment of different pathological
conditions [1]. Among the hundreds of compounds present in cannabis flowers, over 100
phytocannabinoids (pCBs) have been discovered [1]. pCBs are lipidic molecules synthetized
as acid compounds and then decarboxylated when dried or exposed to heat [1]. Among
pCBs, CBD and ∆9-tetrahydrocannabinol (∆9-THC) are the most studied molecules. They
share a common precursor, namely, cannabigerol (CBG) [2]. After the discovery of ∆9-
THC [3], new receptors were cloned, namely, cannabinoid receptors type 1 (CB1Rs) and
type 2 (CB2Rs) [4,5]. In detail, CB1Rs are G-coupled metabotropic receptors that are
highly expressed in the central nervous system (CNS), and are particularly abundant in
the hippocampus, the basal ganglia and the cerebellum. They are located pre-synaptically
on both the excitatory and inhibitory terminals, and they are activated mainly by ∆9-THC,
responsible for the psychoactive effect of this compound. On the other hand, CB2Rs are
mainly expressed on immune cells and in the peripheral nervous system [1].
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However, up to now, other receptor targets for pCBs have been discovered, such as the
transient receptor potential vanilloid type 1 (TRPV1) [6]. Indeed, it has been demonstrated
that CBD can directly modulate these receptors and is able to inhibit the enzymatic inactiva-
tion of the main endocannabinoid anandamide (AEA). CBD is also able to modulate opioid
receptors binding to an allosteric site of the µ and δ opioid receptors, adding further support
to its anti-nociceptive action [7]. Furthermore, pCBs can interact with the G protein-coupled
receptor GPR55 involved in glutamate release regulation [8,9] and voltage-gated calcium
channels (VGCCs), thus regulating CNS excitability [10,11]. Moreover, other studies have
highlighted the capability of pCBs to modulate glycine receptors [12,13], serotonin recep-
tors [14,15] and acetylcholine receptors [16], opening new perspectives for their potential
use in different pathological conditions.

Lately, it was demonstrated that pCBs, and CBD in particular, were able to significantly
affect CNS excitability by acting on GABAergic neurotransmission at both the pre- and
post-synaptic level [17]. In addition, CBD was recently approved by the Food and Drug
Administration (FDA) and the European Medicines Agency (EMA) as an anti-seizure med-
ication for three different neuropathologies characterized by pharmaco-resistant sponta-
neous recurrent seizures (SRSs), namely, Dravet syndrome (DS), Lennox-Gastaut syndrome
(LGS) and tuberous sclerosis complex (TSC) [18–20].

However, studies showing CBD’s effects on GABAA receptors (GABAARs) from
human epileptic tissues are not fully elucidated for two different reasons: the difficulty to
obtain a proper amount of human material to perform electrophysiological recordings and,
even more importantly, the lack of non-epileptic human tissues to compare the effects of
CBD in normal versus pathological conditions.

In this study, taking advantage of the technique of voltage clamp recordings in Xenopus
oocytes microinjected with human tissues [21], we bypass most of these problems, since we
are able to record GABAergic currents from surgical and post-mortem tissues of human
pharmaco-resistant epilepsies: DS, TSC, focal cortical dysplasia (FCD) type IIb and temporal
lobe epilepsy (TLE). In addition, this approach is very powerful when human tissue is
too scarce because of the rarity of these epileptic diseases, since it is possible to record
neurotransmitter-evoked currents from just a few milligrams of brain tissue. Moreover, with
this technique, we were able, as mentioned, to compare the CBD-mediated effect on evoked
GABA currents (IGABA) in control healthy brain samples [22] versus epileptic brain tissues.

2. Materials and Methods
2.1. Patients

All the patients’ tissues (Table 1) used to perform the experiments reported here
have been selected from the databases of the Department of Neuropathology, Amsterdam
University Medical Center, University of Amsterdam (Amsterdam, The Netherlands);
the Department of Neuropathology, University Medical Center Utrecht (Utrecht, The
Netherlands); and the National Institute of Child Health and Human Development Brain
and Tissue Bank for Developmental Disorders (Baltimore, MD, USA).

The patients in Table 1 underwent neurosurgical intervention for the treatment of
pharmaco-resistant epilepsy due to TLE or FCDIIb. After resection, the tissue samples
were instantaneously snap-frozen in liquid nitrogen, processed and subsequently used to
perform our electrophysiology experiments. All the autopsies from which we obtained
the DS and TSC samples were performed no more than 24 h after death, upon obtainment
of specific written consent for the subsequent use for research purposes. Control cases
(two samples: 61 and 38 years old, males) did not have a prior history of epilepsy, pos-
sessed a normal cortical histology that matched their age and did not have any relevant
neuropathology. Both controls died of myocardial infarction. As previously reported,
we already analyzed the immunoreactivity profiles of cortical tissues from autopsies and
surgeries and found only slight differences between these [23,24]. All the procedures which
required the use of human material were carried out following the guidelines from the
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Declaration of Helsinki and the Amsterdam UMC Research Code provided by the Medical
Ethics Committee.

Table 1. Patients’ clinical data.

Patient Age Gender Duration of
Epilepsy

Brain
Region

Type of
Seizures

Diagnosis/Mut/Cause
of Death ASMs

#1 49 M 48 T FIAS/GS DS/SCN1A
mut/heart failure

CLB, STP,
VPA

#2 46 F 44 T FIAS/GS DS/SCN1A mut/
bronchopneumonia

CLB, STP,
VPA

#3 47 M 35 T FAS
TSC/TSC2
mut/Myocardial
infarction

PHB, VPA,
CBZ, CLB

#4 42 F 41 T FIAS
TSC/TSC2
mut/Myocardial
infarction

PHB, VPA,
CBZ

#5 41 M 21 T FIAS/GS TLE-HS CBZ, TPM

#6 54 F 42 T FIAS/GS TLE-HS CBZ, LMT,
PHB

#7 52 M 42 T FIAS/GS TLE-HS CBZ, PHB,
VGB

#8 18 M 16 T FAS FCDIIb/mTOR mut CBZ, VPA,
LMT, LCM

#9 45 M 34 T FAS FCDIIb LEV, OCZ

Patients #1, 2: tissues from autopsies of patients affected by Dravet syndrome (DS) with SCN1A mutation; Patients
#3 and 4: tissues from tuberous sclerosis complex (TSC) patients (TSC2 mutation). All autopsies were performed
within 24 h of death. Patients #5–7: temporal lobe epilepsy (TLE) patients with hippocampal sclerosis (HS).
Patients #8 and 9: tissues from focal cortical dysplasia type IIb (FCDIIb). ASMs—anti-seizure medications; CBZ—
carbamazepine; CLB—clobazam; F—female; FAS—focal aware seizures; FIAS—focal impaired awareness seizures;
GS—generalized seizures; LCM—lacosamide; LEV—levetiracetam; LMT—lamotrigine; M—male; mut—mutation;
OCZ—oxcarbazepine; PHB—phenobarbital; STP—stiripentol; T—temporal; TPM—topiramate; VGB—vigabatrin;
VPA—valproic acid.

2.2. Membrane Preparation

The tissues were shipped in dry ice and either directly prepared for the electrophysio-
logical recordings or conserved at −80 ◦C. The protocols for human membrane extraction
and their microinjection in Xenopus oocytes have already been published and these proce-
dures were carried out as previously described [25]. Concisely, tissues were homogenized
in a membrane buffer solution (in mM: glycine 200, NaCl 150, EGTA 50, EDTA 50 and
sucrose 300; plus 20 µL of protease inhibitors (P2714, Sigma); pH 9, adjusted with NaOH).
Then, the samples were centrifuged for 15 min at 9500× g. Subsequently, the supernatant
was centrifuged for 2 h at 100,000× g with an ultra-centrifuge (Beckman-Coulter). The
pellet was rinsed with sterilized water and re-suspended in assay buffer (glycine 5 mM) for
immediate use or stored at −80◦. The use of laboratory animals (Xenopus laevis) and all the
related procedures (surgery, oocytes extraction and their utilization) were validated by the
Italian Ministry of Health and followed its guidelines (authorization no 427/2020-PR).

2.3. Xenopus Oocytes Electrophysiology

The electrophysiological recordings on Xenopus oocytes were performed 24–48 h after
cytoplasmic injection [25] using the technical approach of two-electrode voltage clamp.
We recorded GABA-evoked currents (IGABA) [26] after placing the oocytes in a 0.1 mL
recording chamber and continuously perfusing them with oocyte Ringer solution (OR, in
mM: NaCl 82.5; KCl 2.5; CaCl2 2.5; MgCl2 1; Hepes 5, adjusted to pH 7.4 with NaOH) at
room temperature (20–22 ◦C). The perfusion system was operated by a computer connected
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to a gravity-driven multi-valve device (9–10 mL/min; Biologique RSC-200; Claix, France),
which granted precise control of the duration of GABA applications. With this setup, the
whole volume of the recording chamber was entirely replaced in 0.5 to 1 s. For all the
microtransplanted oocytes, we tested the stability of IGABA by assessing two consecutive
GABA pulses, separated by a 4 min wash-out. In order to evaluate the acute effect of CBD
(2 µM for 10 s), we used only the cells characterized by a <5% IGABA modification. We
defined IGABA variation as a percent increase or decrease in the mean current elicited by
two GABA applications before and after exposure to CBD. The GABA current run-down
was defined as the decrease in the peak current amplitude after six consecutive GABA
applications (10 s) spaced out by 40 s of wash-out and expressed as a percentage (I6th
peak/I1st peak × 100). In another set of experiments, we used human GABAAR subunits
encoding cDNAs (pCDM8 vector α1β2γ2 ratio 1:1:2; α1β2 ratio 1:1; cDNAs were a kind
gift from Dr. K. Wafford). In this case, we performed an intranuclear injection in Xenopus
oocytes with a pressure microinjector (PLI-100, Warner Instruments, Holliston, MA, USA).

2.4. Statistics

We assessed normal distribution with the Shapiro–Wilk test in order to choose para-
metric (Student’s t-test) or non-parametric (Wilcoxon signed rank test, Mann–Whitney
rank sum test) tests before starting the data analysis process. Data were statistically ana-
lyzed using Sigmaplot 12 software, and differences between two data sets were considered
significant when p < 0.05. Oocytes used in each experiment are indicated as (n).

3. Results

• CBD modulation on GABA-evoked currents in Xenopus oocytes micro-transplanted
with DS human tissues

DS is an epileptic disorder characterized by pharmaco-resistant recurrent seizures.
CBD showed promising results both in animal models and in clinical trials [27–29], and
was, thus, approved to treat this condition both in the USA and Europe [18,19]. In this set
of experiments, we were able to test the effect of an acute application of CBD in two brain
samples obtained from adult DS patients (Table 1). After the injection of oocytes with this
membrane preparation, we elicited GABA-evoked currents (IGABA) with applications of 4 s
of GABA (50 µM) (mean −65.0 ± 7.1 nA; Figure 1A; n = 20; #1, 2, Table 1).

In order to confirm the recordings of genuine IGABA, we completely blocked these
currents with high concentrations of bicuculline (100 µM; not shown). For comparison, we
recorded, with the same approach, IGABA from oocytes injected with membranes obtained
from two control patients without any neurological disease (see Methods). We found a
comparable IGABA amplitude (mean −63.3 ± 3.5 nA; n = 12). When we recorded IGABA
after the acute co-application of GABA and CBD, we found a significant increase in the
elicited IGABA (+27.4 ± 4.8%; GABA 50 µM; CBD 2 µM; Figure 1A; n = 16; p < 0.05; #1–2;
Table 1). This CBD effect on IGABA was fast and reversible, since after 5 min of washing
with the oocyte Ringer solution (OR), the IGABA amplitude recovered to pre-treatment
values (−2.7% ± 5.7%; GABA 50 µM; n = 8; p > 0.05 compared to the control current;
#1–2; Table 1). Afterwards, with the same approach, we tested the effect of CBD on the
oocytes injected with the control cortical membranes obtained from the autopsies of healthy
patients. Interestingly, we found that CBD was able to increase the amplitudes of IGABA in
the control tissues (+25.5 ± 2.4%; GABA 50 µM, n = 10; p < 0.05, CBD 2 µM), similarly to
what was showed in DS.
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Figure 1. CBD effect on GABA currents (IGABA) amplitude in oocytes transplanted with tissues
from (A) Dravet syndrome (DS, IGABA range: from 11.2 to 122.4), (B) tuberous sclerosis complex
(TSC, IGABA range: from 7.3 to 85.1), (C) focal cortical dysplasia type IIb (FCD, IGABA range: from
6.8 to 72.3) and (D) temporal lobe epilepsy (TLE, IGABA range: from 6.2 to 89.3) patients. All the
bar-graphs show the % variation in the mean current amplitude after incubation with CBD 2 µM
(black, % current before incubation; red, % current after incubation), * p < 0.05. In each panel, the
inset represents sample currents with or without CBD. Black horizontal bars represent GABA 50 µM
application; white horizontal bars represent CBD 2 µM application.

• CBD modulation on GABA-evoked currents in Xenopus oocytes micro-transplanted
with TSC human tissues

Since the use of CBD was approved by both the FDA and the EMA to treat TSC patients
as an add-on therapy [20], we obtained surgical brain samples from these patients in order
to evaluate if CBD was able to modulate IGABA in this genetic epileptic condition. Indeed,
TSC is a genetic, rare and multi-systemic disease characterized by different neurological
alterations, including strong pharmaco-resistant seizures [30]. Different studies have
highlighted an altered neurotransmission in this pathology, engaging both an inhibitory
and excitatory transmission [31]. CBD was able to significantly increase evoked IGABA
when applied together with GABA (CBD = +29.4 ± 3.0%; GABA 50 µM; CBD 2 µM; n = 18;
p < 0.05; #3 and #4; Table 1; Figure 1B). Again, also in this case, the effect was reversible,
since 5 min of wash-out with OR was able to recover the IGABA amplitudes to pre-CBD
levels (−4.0% ± 2.5%; GABA 50 µM; n = 10; p > 0.05 compared to the control current; #1–2;
Table 1).

• CBD modulation on GABA-evoked currents in Xenopus oocytes micro-transplanted
with FCDIIb human tissues

FCDs are a group of pathological conditions characterized by an altered cortical
development often associated with pharmaco-resistant epilepsy [32–34]. Among them,
FCD type IIb represents the most common malformation of cortical development [34]. The
histopathological hallmark of FCDIIb is represented by an altered cortical lamination and
the presence of cellular abnormalities (e.g., balloon cells and dysmorphic neurons) linked to
an altered inhibitory neurotransmission, leading thus to SRSs [35,36]. We investigated the
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possible effect of CBD on GABAARs using brain tissues from FCD patients that underwent
epilepsy surgery. We used the same approach used above for DS and TSC, recording
bicuculline-sensitive IGABA (not shown) in order to test the CBD effect on these human
samples. We obtained a statistically significant increase in IGABA amplitudes (CBD =
+60.5 ± 25.5%; GABA 50 µM; CBD 2 µM; n = 11; p < 0.05; #8 and #9; Table 1; Figure 1C) that
was, as in the case of DS and TSC, completely washable after 5 min of wash-out with OR
solution (not shown).

• CBD modulation on GABA-evoked currents in Xenopus oocytes micro-transplanted
with TLE human tissues

TLE represents the most common type of focal epilepsy in adulthood [37], and based
on seizure semiology, it can fall into two different categories: the most common mesial form,
which is characterized by mesial temporal lobe (mTLE) symptoms, and a rarer form with
lateral temporal lobe symptoms (lTLE) [38]. Usually, after an epileptogenic insult (i.e., head
trauma, stroke, brain tumor, brain infection), several pathological and physio-pathological
alterations occur, and after a latent period that can last from hours to years, the brain
becomes epileptic [37]. One of the main alterations that occurs during epileptogenesis,
responsible for the recurrent seizures, is an imbalance between the excitatory and inhibitory
neurotransmissions [39]. In particular, an increased use-dependent desensitization (i.e.,
GABA current run-down) of the GABAARs was described as a pathological hallmark
of pharmaco-resistant mTLE [40–42]. Briefly, GABAARs from mTLE tissue become less
responsive to repeated activation than those from healthy control tissue [41]. This GABA
current run-down may imply hyper-excitability. In our experiments, we found that CBD
application (2 µM) was able to induce a washable increase in IGABA (CBD = +30.4 ± 2.2%;
GABA 50 µM; n = 20; #5–7; Table 1; Figure 1D). In another set of experiments, we tested
whether CBD was able to improve the GABAA current run-down in order to restore a
more physiological GABAergic neurotransmission. As previously reported [42,43], the
application of 500 µM GABA in the oocytes injected with the membranes from the cortex
of mTLE patients exhibited a statistically significant current run-down (the IGABA elicited
by the sixth GABA application fell to 40.7 ± 2.8 %; n = 12; #5–7; Table 1; Figure 2).
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normalized to those elicited by the first GABA application. Data are expressed as mean ± SEM. Inset
represents superimposed first and sixth GABA applications (500 µM) without (black traces) or with
CBD (red traces). Black horizontal bars represent GABA application; CBD 2 µM was perfused during
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Surprisingly, an acute application of CBD 2 µM did not significantly change the rate of
run-down (42.9 ± 2.8%; GABA+ CBD 2 µM; n = 16; #5–7; Table 1), while the increase in
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IGABA currents still persisted, even if to a lesser extent. This last evidence suggests that the
CBD effect on GABA current amplitudes is not linked to the desensitization processes.

• CBD modulation of GABAergic neurotransmission of α1β2 GABAA receptors

To better understand the CBD effect on IGABA amplitudes, we performed another set
of experiments on oocytes expressing single GABAARs without ancillary or associated
proteins. Thus, we intranuclearly injected cDNAs encoding for the most common GABAAR
subunits in CNS (α1β2γ2) with or without the γ GABAAR subunit that is involved in the
benzodiazepine (BDZ) binding site [44]. In these conditions, CBD was able to significantly
increase the IGABA amplitudes (α1β2γ2: +48.0 ± 13.0%; GABA 5 µM; Figure 3; n = 6). For
comparison, we also tested BDZ flunitrazepam (FLU, 2 µM), and we found, confirming
previous reports [45], a strong potentiation of the elicited IGABA (+140 ± 43%; GABA
5 µM; Figure 3; n = 6). Subsequently, we expressed α1β2-containing GABAARs, and we
found that, while the application with FLU was completely ineffective in increasing IGABA
(−4 ± 3.5%; GABA 5 µM; Figure 3; n = 6), when we applied CBD, we still found a significant
increase in IGABA (α1β2: +24.5 ± 3.8%; GABA 5 µM; Figure 3; n = 6).
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Figure 3. CBD effect in oocytes expressing α1β2γ2 and α1β2 GABAA receptor subunits. Bar graphs
show the GABA current increase (as %) induced by CBD 2 µM (red bars) and flunitrazepam (FLU,
blue bars) 6 µM in oocytes intranuclearly injected with cDNAs encoding human α1β2γ2 and α1β2
GABAAR subunits, * p < 0.05. In the inset, representative current traces of the experiment with
α1β2-containing GABAARs in control condition (black trace), and with CBD (red trace) and FLU
(blue trace) as indicated; note the ineffectiveness of FLU in this condition. Black horizontal bars
represent GABA 5 µM application, white horizontal bars represent CBD 2 µM application.

4. Discussion

In this paper, using human epileptic brain tissues, we were able to highlight a mod-
ulation of CBD on the function of GABAARs. GABA impairment is a well-established
mechanism involved in brain hyperexcitability [46]. Indeed, several studies have demon-
strated how GABAAR subunits’ composition and functional properties change in epileptic
disorders [42,47]. Furthermore, some of the most used ASMs, such as BDZ and barbiturates,
act specifically on this class of ionotropic receptors, since GABAAR represents one of the
main pharmacological targets in epileptic disorders, and the recovery of its physiological
function could lead to a correct inhibitory neurotransmission [46]. In addition to BDZ and
other GABAergic ASMs, pCBs represent a new class of pharmacological tools that show
promising results in pre-clinical and clinical studies. Specifically, CBD obtained approval
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for use in some strongly pharmaco-resistant epilepsies such as DS, LG syndrome and,
lately, TSC, as an add-on therapy [18,19,29]. The mechanism by which CBD and other pCBs
exert their therapeutic effects still remains partially unclear, as multiple different targets
have been identified [6–10,12–16,48]. Here, taking advantage of the micro-transplantation
of human brain membranes in Xenopus laevis oocytes, we confirm that CBD can affect
GABAergic neurotransmission by acting on human GABAARs. We tested CBD on four
different epileptic conditions (DS, TSC, FCDIIb and mTLE), all characterized by a strong
pharmaco-resistance to canonical ASMs, showing that CBD can significantly and reversibly
potentiate GABAergic-evoked currents in all these diseases. Interestingly, in FCDIIb, the
CBD effect seems more significant, thus suggesting that this potentiation may also be
related to different cellular subtypes and/or different GABAAR arrangements. Further
studies using human slices from FCDIIb patients could better elucidate this specific point.
However, we can hypothesize that CBD’s ability to reduce the frequency and severity
of epileptic seizures [18,19] is, at least in part, due to an interaction with GABAARs. In
addition, we demonstrated that CBD also carries out its action on control tissues, indicating
that this compound can also modulate the normal function of GABAARs. Interestingly, the
aforementioned CBD effect is quite fast and rapidly washable, suggesting that its action is
not mediated by the activation of intracellular pathways, as previously shown for other
ASMs [46,49]. In line with this evidence, we did not observe any CBD effect on GABA
current run-down in mTLE, an impairment that is prevented by acting on the phospho-
rylation mechanisms of GABAARs and/or their associated proteins [23,40,42]. To further
exclude the possibility that CBD could interact with endogenous proteins and/or the
activation of host cell intracellular signaling, we expressed, via the intranuclear injection
of cDNAs, human GABAARs formed by α1β2γ2, the most common subunit composi-
tion, showing again a clear increase of IGABA. Altogether, these results strengthen our
hypothesis that CBD can directly bind to GABAARs, increasing its efficacy, and that this
effect is not mediated by specific CBRs [2,50]. Moreover, in different forms of epilepsy,
GABAAR undergoes different rearrangements of its subunit composition, such as in DS [45]
or mTLE [42,47]. These subunit changes can modify GABAAR’s function, often determining
a reduced inhibitory tone and altering the effectiveness of ASMs on the original molecular
target [51]. This hypothesis is strengthened by several studies that clearly showed CBD’s
ability to modulate different GABAAR subunit compositions [17,45], such as α2, α3 and
α6, indicating, thus, that its action is not linked to the different α subunit expressions. In
the aforementioned conditions, drugs targeting new and alternative modulatory sites on
GABAARs are likely to yield better results compared to classical ASMs. Noteworthily,
we showed that CBD’s effect on IGABA still persists in α1β2—GABAARs, while a classical
BDZ [44] did not show any significant effect. This last finding suggests that CBD may act
also on defective GABAARs, especially in those conditions where BDZs are partially or
completely ineffective [52]. Interestingly, as demonstrated in other studies [17], CBD is
also able to modulate δ-containing GABAARs, making it an interesting pharmacological
tool to potentially treat other epileptic pharmaco-resistant conditions characterized by a
dysfunction of “tonic” GABAAR neurotransmission [53]. Further studies are required in
order to better characterize CBD’s modulation of GABAAR’s function and identify the
exact site of CBD binding on human GABAARs. In conclusion, we can hypothesize that
CBD, being devoid of relevant psychotropic effects [11,54], can open new perspectives for
its use, not only in epileptic diseases, but also in the treatment of other neurological and
psychiatric conditions where GABAergic transmission is impaired, such as attention-deficit
hyperactivity disorders (ADHD) [55] and neurodegenerative diseases [56–58].
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